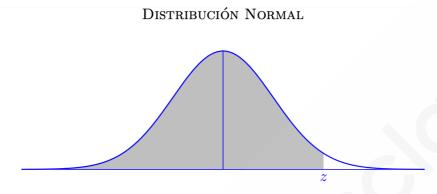
A.4. Calificación máxima: 2.5 puntos.

En una urna hay dos bolas blancas y cuatro bolas negras. Se extrae una bola al azar. Si la bola extraída es blanca, se devuelve a la urna y se añade otra bola blanca; si es negra, no se devuelve a la urna. A continuación, se vuelve a extraer una bola al azar de la urna.

- a) (1 punto) ¿Cuál es la probabilidad de que las dos bolas extraídas sean de distinto color?
- b) (1.5 puntos) ¿Cuál es la probabilidad de que la primera bola extraída fuera negra, sabiendo que la segunda ha sido blanca?

Solución:

A.4.


a)
$$P(B_1) = \frac{2}{6}, \ P(N_2|B_1) = \frac{4}{7} \Rightarrow P(B_1 \cap N_2) = \frac{1}{3} \cdot \frac{4}{7} = \frac{4}{21}; \ P(N_1) = \frac{4}{6}, \ P(B_2|N_1) = \frac{2}{5} \Rightarrow P(N_1 \cap B_2) = \frac{2}{3} \cdot \frac{2}{5} = \frac{4}{15}.$$
 Por tanto, la probabilidad de que las dos bolas sean distintas es

$$P(B_1 \cap N_2) + P(N_1 \cap B_2) = \frac{4}{21} + \frac{4}{15} = \frac{16}{35} \approx 0.45714.$$
b)
$$P(N_1|B_2) = \frac{P(N_1 \cap B_2)}{P(B_2)} = \frac{4/15}{P(B_2|B_1)P(B_1) + P(B_2|N_1)P(N_1)} = \frac{4/15}{(3/7)(2/6) + (2/5)(4/6)} = \frac{28}{43} \approx 0.65116.$$

B.4. Calificación máxima: 2.5 puntos.

Según las estadísticas meteorológicas, en una ciudad nórdica llueve un promedio del 45 % de los días. Un climatólogo analiza los registros pluviométricos de 100 días elegidos al azar entre los de los últimos 50 años.

- a) (1 punto) Exprese cómo calcular con exactitud la probabilidad de que en 40 de ellos haya llovido.
- b) (1.5 puntos) Calcule dicha probabilidad aproximándola mediante una normal.

Ejemplo: si Z tiene distribución N(0,1), P(Z < 0.45) = 0.6736.

	z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
	0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
	0,1	0,5398	$0,\!5438$	$0,\!5478$	$0,\!5517$	0,5557	0,5596	0,5636	0,5675	$0,\!5714$	$0,\!5753$
	0,2	0,5793	$0,\!5832$	0,5871	$0,\!5910$	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
	0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
	0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
	0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
	0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
	0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
	0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
	0,9	$0,\!8159$	$0,\!8186$	0,8212	0,8238	0,8264	0,8289	0,8315	$0,\!8340$	$0,\!8365$	0,8389
	1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	$0,\!8599$	0,8621
	1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
	1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
	1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
	1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
	1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
	1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
	1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
	1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
	1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
	2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
1											
	2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
	2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
	2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
	2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
	2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
	2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
	2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
	2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
	2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
	3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990

Solución:

B.4.

a)
$$X \sim B(100; 0.45) \Rightarrow P(X=40) = \binom{100}{40} 0.45^{40} 0.55^{60}.$$

b) Con $\mu = np = 100 \cdot 0.45 = 45$, $\sigma = \sqrt{n \cdot p \cdot (1-p)} = \sqrt{100 \cdot 0.45 \cdot 0.55} = \sqrt{24.75}$, aproximando con la normal:

$$\begin{split} P_{\mathsf{Binom}}(X=40) \approx P_{\mathsf{Normal}}(39.5 \leq X \leq 40.5) &= P\left(\frac{39.5 - 45}{\sqrt{24.75}} \leq \frac{X - 45}{\sqrt{24.75}} \leq \frac{40.5 - 45}{\sqrt{24.75}}\right) \\ &= P(-1.11 \leq Z \leq -0.9) = P(1.11) - P(0.9) = 0.8665 - 0.8159 = 0.0506. \end{split}$$