A.3. Calificación máxima: 2.5 puntos.

Dado el punto A(1,0,-1), la recta $r\equiv x-1=y+1=\frac{z-2}{2}$ y el plano $\pi\equiv x+y-z=6$, se pide:

- a) (0.75 puntos) Hallar el ángulo que forman el plano π y el plano perpendicular a la recta r que pasa por el punto A.
- b) (0.75 puntos) Determinar la distancia entre la recta r y el plano π .
- c) (1 punto) Calcular una ecuación de la recta que pasa por A, forma un ángulo recto con la recta r y no corta al plano π .

Solución:

A.3.

- a) Sea α el plano perpendicular a r que pasa por A. Su vector normal tiene la dirección de la recta r, $\overrightarrow{n_{\alpha}}=(1,1,2)$. El vector normal al plano π es $\overrightarrow{n_{\pi}}=(1,1,-1)$. Por tanto, el coseno del ángulo entre π y α es $\frac{|\overrightarrow{n_{\pi}}\cdot\overrightarrow{n_{\alpha}}|}{|\overrightarrow{n_{\pi}}|\cdot|\overrightarrow{n_{\alpha}}|}=0$ y los dos planos son perpendiculares.
- **b)** La recta r y el plano π son paralelos y en consecuencia, la distancia entre ellos es igual a la distancia entre un punto de la recta $P_r(1,-1,2)$ y el plano π . Por lo tanto, $d(r,\pi)=d(P_r,\pi)=\frac{|1-1-2-6|}{\sqrt{3}}=\frac{8\sqrt{3}}{3}$.
- c) Se comprueba que A no pertenece al plano π . El vector director de la recta s que buscamos es $\overrightarrow{d_s}$. $\overrightarrow{d_s} = \overrightarrow{d_r} \times \overrightarrow{n_\pi} = (-3,3,0) \parallel (-1,1,0)$. Por tanto una ecuación de la recta es $s \equiv \frac{x-1}{-1} = y = \frac{z+1}{0}$.

B.3. Calificación máxima: 2.5 puntos.

Dadas las rectas

$$r \equiv \frac{x-2}{1} = \frac{y+1}{1} = \frac{z+4}{-3}, \qquad s \equiv \left\{ \begin{array}{l} x+z=2 \\ -2x+y-2z=1 \end{array} \right.$$

- a) (1.5 puntos) Escriba una ecuación de la recta perpendicular común a r y a s.
- b) (1 punto) Calcule la distancia entre r y s.

Solución:

B.3.

a) La recta r pasa por P(2,-1,-4) y tiene vector director $\vec{u}=(1,1,-3)$. La recta s pasa por Q(1,5,1) y tiene vector director $\vec{v} = (1,0,1) \times (-2,1,-2) = (-1,0,1)$. La perpendicular común a r y s es la intersección del plano π que pasa por P y tiene vectores directores \vec{u} y $\vec{w}=\vec{u}\times\vec{v}=(1,1,-3)\times(-1,0,1)=(1,2,1)$ y el plano τ que pasa por Q y tiene vectores directores \vec{v} y \vec{w} . Las ecuaciones de π y τ son

$$\pi \equiv \left| \begin{array}{ccc} x-2 & y+1 & z+4 \\ 1 & 1 & -3 \\ 1 & 2 & 1 \end{array} \right| = 7x - 4y + z - 14 = 0, \quad \tau \equiv \left| \begin{array}{ccc} x-1 & y-5 & z-1 \\ -1 & 0 & 1 \\ 1 & 2 & 1 \end{array} \right| = -2(x-y+z+3) = 0$$

y por tanto la perpendicular común es $\left\{ \begin{array}{l} 7x-4y+z-14=0 \\ x-y+z+3=0 \end{array} \right.$ **b)** La distancia entre ambas rectas puede calcularse, por ejemplo, como el módulo de la proyección de \overrightarrow{PQ} sobre la dirección de la perpendicular común a ambas rectas, \vec{w} . Dicha proyección es $\frac{\overrightarrow{PQ} \cdot \vec{w}}{\|\vec{w}\| \|\vec{w}\|}$. Su módulo es:

$$|(-1,6,5)\cdot(1,2,1)|\frac{\|(1,2,1)\|}{\|(1,2,1)\|^2} = \frac{16}{\sqrt{6}} \approx 6.532.$$

